Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 36(Suppl_2): i668-i674, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33381825

RESUMO

MOTIVATION: The evolution of complexity is one of the most fascinating and challenging problems in modern biology, and tracing the evolution of complex traits is an open problem. In bacteria, operons and gene blocks provide a model of tractable evolutionary complexity at the genomic level. Gene blocks are structures of co-located genes with related functions, and operons are gene blocks whose genes are co-transcribed on a single mRNA molecule. The genes in operons and gene blocks typically work together in the same system or molecular complex. Previously, we proposed a method that explains the evolution of orthologous gene blocks (orthoblocks) as a combination of a small set of events that take place in vertical evolution from common ancestors. A heuristic method was proposed to solve this problem. However, no study was done to identify the complexity of the problem. RESULTS: Here, we establish that finding the homologous gene block problem is NP-hard and APX-hard. We have developed a greedy algorithm that runs in polynomial time and guarantees an O(ln⁡n) approximation. In addition, we formalize our problem as an integer linear program problem and solve it using the PuLP package and the standard CPLEX algorithm. Our exploration of several candidate operons reveals that our new method provides more optimal results than the results from the heuristic approach, and is significantly faster. AVAILABILITY AND IMPLEMENTATION: The software and data accompanying this paper are available under the GPLv3 and CC0 license respectively on: https://github.com/nguyenngochuy91/Relevant-Operon.


Assuntos
Genômica , Software , Algoritmos , Bactérias , Biologia Computacional , Dureza
2.
Genome Biol ; 20(1): 244, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744546

RESUMO

BACKGROUND: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. RESULTS: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. CONCLUSION: We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.


Assuntos
Anotação de Sequência Molecular/tendências , Animais , Biofilmes , Candida albicans/genética , Drosophila melanogaster/genética , Genoma Bacteriano , Genoma Fúngico , Humanos , Locomoção , Memória de Longo Prazo , Anotação de Sequência Molecular/métodos , Pseudomonas aeruginosa/genética
3.
Bioinformatics ; 35(17): 2998-3004, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689726

RESUMO

MOTIVATION: Complexity is a fundamental attribute of life. Complex systems are made of parts that together perform functions that a single component, or subsets of components, cannot. Examples of complex molecular systems include protein structures such as the F1Fo-ATPase, the ribosome, or the flagellar motor: each one of these structures requires most or all of its components to function properly. Given the ubiquity of complex systems in the biosphere, understanding the evolution of complexity is central to biology. At the molecular level, operons are classic examples of a complex system. An operon's genes are co-transcribed under the control of a single promoter to a polycistronic mRNA molecule, and the operon's gene products often form molecular complexes or metabolic pathways. With the large number of complete bacterial genomes available, we now have the opportunity to explore the evolution of these complex entities, by identifying possible intermediate states of operons. RESULTS: In this work, we developed a maximum parsimony algorithm to reconstruct ancestral operon states, and show a simple vertical evolution model of how operons may evolve from the individual component genes. We describe several ancestral states that are plausible functional intermediate forms leading to the full operon. We also offer Reconstruction of Ancestral Gene blocks Using Events or ROAGUE as a software tool for those interested in exploring gene block and operon evolution. AVAILABILITY AND IMPLEMENTATION: The software accompanying this paper is available under GPLv3 license on: https://github.com/nguyenngochuy91/Ancestral-Blocks-Reconstruction. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Evolução Molecular , Genoma Bacteriano , Óperon , Bactérias , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...